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Annotation

We formulate and prove the variational extremum principle for
viscous incompressible and compressible fluid, from which principle
follows that the Naviet-Stokes equations represent the extremum
conditions of a certain functional. We describe the method of seeking
solution for these equations, which consists in moving along the gradient
to this functional extremum. We formulate the conditions of reaching
this extremum, which are at the same time necessary and sufficient
conditions of this functional global extremum existence.

Then we consider the so-called closed systems. We prove that for
them the necessary and sufficient conditions of global extremum for the
named functional always exist. Accordingly, the search for global
extremum is always successful, and so the unique solution of Naviet-
Stokes is found.

We contend that the systems described by Naviet-Stokes equations
with determined boundary solutions (pressure or speed) on all the
boundaries, are closed systems. We show that such type of systems
include systems bounded by impenetworkrable walls, by free space under
a known pressure, by movable walls under known pressure, by the so-
called generating surfaces, through which the fluid flow passes with a
known speed.
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Introduction

In his previous works [6-8] the author presented the full action
extremum principle, allowing to construct the functional for various
physical systems, and, which is most important, for dissipative systems.
In [4, 5, 9] this principle is described applied to the hydrodynamics of
incompressible fluid. There one may find multiple examples of this
principle use for the solution of specific problems. In this paper the
author is using a more strict extension of this principle for the powers [6]
and considers also the hydrodynamics of incompressible fluid.

Here we are discussing the Navier-Stokes equations for viscous
incompressible fluid. We show that these equations are the conditions of
a certain functional’s extremum. A solution method for these equation is
described - it consists of moving by the gradient in the direction of this
functional’s extremum. The conditions of reaching this extremum are
formulated — they are simultaneously necessary and sufficient conditions
of the existence of this functional’s global extremum.

Then we separate the so-called closed systems. For them it is proved
that the necessary and sufficient conditions of the existence of this
functional’s global extremum are always valid Thereafter, the method of
searching for global extremum always gives a positive result, and hence
the sole solution of the Navier-Stokes equations is found.

It is stated that the systems described by Navier-Stokes equations,
having definite boundary conditions (of pressure or speed) on all the
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boundaries, are closed systems. It is shown that such systems include the
systems bounded by

o impenetrable walls ,

o free surfaces thatare under known pressure,

o movable walls that are under known pressure,

o so-called generating surfaces through which the flows passes

with known speed.
In this way we have shown that the Navier-Stokes equations have

only one solution.

1. Viscous incompressible fluid

1.1. Hydrodynamic equations for viscous incompressible fluid

The hydrodynamic equations for viscous incompressible liquid are as
follows [2]:
div(v) =0, (1)

ov
pat+vp—luAv+p(v-V)v—pF:0, @)

where
L =const is constant density,
M - coefficient of internal friction,
P - unknown pressure,

V= lvxavy:VZJ - unknown speed, vector,

F = anFyaFZJ - known mass force, vector,

X,Y,Z,l - space coordinates and time.

1.2. The power balance

Umov [1] discussed for the liquids the condition of balance for
specific (by volume) powers in a liquid flow. For a non-viscous and
incompressible liquid this condition is of the form (see (50) in [1])

A)+B5(v)+1(p,v) =0, 3)
and for viscous and incompressible liquid - another form (see (80) in [1])
AW +B(0)+B(p,v)=0, O
where
Yo, ow'’?
P="——) 5
o o

81



Physics and Astronomy

v dp,x " dp ¥ dp,, i
Nde  dy  de

d d d
P=1v Pry Py Pyz || ©)
ode dy  de

vz(dpxz + dp Yz + dpzzj

dx dy dz
3 =v-Vp, )
2 2 2
| dw aw aw
Ps=— — + ) ®)
Y (v’“ i Y@y F dzJ
w? =(v)26+vJ2,+v§) ©)

Pxy and so on — tensions (see [2]).

Here B is the power of energy variation, Fj is the power of work of
pressure variation, F5 - the power of variation of energy variation for
direction change, and the value

By (p,v)=F5(v)+ By(p,v) (10)
is, as it was shown by Umov, the variation of energy flow power through
a given liquid volume — see (56) u (58) B [1]. In [2] it was shown, that for
incompressible liquid the following equality is valid
APxx + dp o Adpyz

dx dy dz

dpyy . dpyy . dapy,
dx dy dz

=Vp—u-Av- 1

dx dy dz

dpxz + dp Yz + dpzzj

From this it follows that

Py =v(Vp— p- Av) (12
ot, subject to (6),

P =P - P (13
where
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B=uv-Av (14)
- power of change of energy loss for internal friction during the motion.
Therefore, we rewrite (4) in the form

B)+B(v)+B(p,v)-B()=0, (15)
We shall supplement the condition (15) by mass forces power
Fy=pFv. (106)

Then for every viscous incompressible liquid this balance condition is of
the form

A)+ B0+ B(p,v)-B0)-F(v)=0. a7
Taking into condition(1l) and formula (pla) let us rewrite (7) in the form
=div(v- p), (18)
Taking into account (p9a), condition(1l) and formula (pla) let us rewrite
(8) in the form

R =divly-w?) 1)

From (18, 19) and Ostrogradsky formula (p28) we find:
[[§Paav = [[[div(v-plav =[[ p-v,-dS. 0
V

|14 S
jijst=jjjdiv(v-W2)fV=”W2 v, -dS  (20a)
V |14 S
ot, subject to (p15),

J{[pav=[[Je-Gony =[fw-v,-as. ey

Returning again to the definitions of powers (7, 8), we will get

HI v-VpQV = ”PS vy -dS, 21a)
Jy(v ol - (12 v -as o
[[Jv-Gnv = “Wz "V, - dS. 210)
4 S

1.3. Enetgian-2 and quasiextremal
For further discussion we shall assemble the unknown functions
into a vector
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q:[p’v]zl.p7vxavyavzj- 22)

This vector and all its components are functions of (X, y,z,f). We are

considering a liquid flow in volume V. The full action-2 [6] in
hydrodynamics takes a form

T
b= I{§9%(q(x, V,z, t)dV}dt, (23)
0w

Having in mind (17) the definition of energian-2 in [6], let us write the
energian-2 in the following form:

1
ER(Q)=1’1(V)—§P3(V)+P4(Q)+1’5(V)—P6(V). (24)
Below in Supplement 1 will be shown — see (p4, p13, p15):

dv
P=p-v—, 25
=P (25)
Ps=p-v-G(v), (26)
where
Gv)=(v-V. @7)

Taking this into account let us rewrite the energian-2 (24) in a detailed
form

dv 1 :
R(g) =,0-vd‘;—2,u-v-Aerdlv(v-p)+p-v-G(v)—va. (28)
Further we shall denote the derivative computed according to

0
Ostrogradsky formula (p23), by the symbol 870’ as distinct from

1%
ordinary derivative —— . Taking this into account (p16), we get

v
0 dv dv 0
Il plv. %= 5%, % ()= u-Av:
| G R
L= 0 LB em)=ptevsl @
oq V(p)| ov
% (Ry(v) = pF.

In accordance with [6] we write the quasiextremal in the following form:
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é>(11( dVJj 2% (BW)+  (Byla)

ov dt)) 2 ov oq

+ 2 (A(0,GO) -2 (7))

From (29) it follows that the quasiextremal (30) after differentiation
coincides with equations (1, 2).

= 0. (30)

1.4. The split energian-2
Let us consider the split functions (22) in the form

g'=[p V=[P vVt (31)

q”:[p”,v”]:[p”,v;,v;,vgj. (32)
Let us present the split energian-2 taking into account the formula (p15)
in the form

{7t oo

Ry (q',q") =1 +2(div(V'- p")—div(y"- p'))+ ENGE)
yoX (V,G(V”) _ V”G(Vl)) —p- F(V' _ V”)

Let us associate with the functional (23) functional of split full
action-2
T
®, = [{[Ry(q'.q"dV (t, (34)
0w
With the aid of Ostrogradsky formula (p23) we may find the variations of
functional (34) with respect to functions q'. In this we shall take into

account the formulas (p21), obtained in the Supplement 1. Then we
have:

50—%,2 =b,, (35)
ap

0 ER2 =b,, (36)

b,y =2div(v"), 37)
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2p-ci;t—2y-Av'+2V(p")

bv’ = " 4 ) (38)
+2p-| G v"al +G v’g —-p-F
"oX "oX
So, the vector
!

b' = [bpf,bva (39)
is a variation of functional (34), and the condition

b’:[b ', ber:O (40)
is the necessary condition for the existence of the extremal line. Similarly,

b” = lb ", ban = 0 (41)

The equations (40, 41) are necessary condition for the existence of a
saddle line. By symmetry of these equations we conclude that the optimal

functions qb and q6, satisfying these equations, satisfy also the
condition

q0 = 40- 42)
Subtracting in couples the equations (40, 41) taking into consideration
(37, 38), we get

2div(v' +v") =0, (43)
_ d(v' +v")
P

+2p- G(v", v j+ G(v', v )+ G(V', v )+ G[v”, v j
oX oX oX oX

For v/ =v" according to (p12), we have
[G(v”)+ G(v',g(j +G(v')+ G(V”,S;}(ﬂ =G(V'+Vv"). @45

Taking into account (27, 45) and reducing (43, 44) by 2, moaygaem we get
the equations (1, 2), where

o "
9d=490 T4 (46)
- see (22, 31, 32), i.e. the equations of extremal line are Naviet-Stokes
equations.

2 —2u-AV +V")+2V(p'+ p")-2p-F

0 44

1.5. About sufficient conditions of extremum
Let us rewrite the functional (34) in the form
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T
Dy = [ 4§1Ra(q'.q")dx dy 1z pdt (47)

Olz(ylx
TA€ BEKTOPHI (f ’,q” onpeaeAeHus 1o (31, 32), X = (x,y,z ,t ) — BEKTOP
HE3aBHCHUMBIX IIEpEMEHHBIX. Aasee OYAEM BapbHPOBATH TOABKO
ymamm g'(X)=[p'(X),V'(X)].

Vector b, defined by (39), is a variation of functional @5 by the

function ¢’ and depends on function ¢, i.e. be(q'). Here the
function ¢" here is fixed.

Let S be an extremal, and subsequently, the gradient in it is bg = 0.

To find out which type of extremum we have, let us look at the sign of
functional's increment

IDy =D, (S)-D,(C), (48)
where C'is the line of comparison, where b =00, # 0. Let the values

vector ¢’ on lines S u C differ by

qc—4s =49 —qs=01'=a-Db, (49)
where b is the variation on the line C, @ — a known number. Thus,
o ps, b
qg =qs+a-b= ,S+a P (50)
Vs v

where bp, b, are determined by (35, 36) accordingly, and do not

depend on ¢".
If
oDy =a-A, (51)
where A has a constant sign in the vicinity of extremal bs =0, then
this extremal is sufficient condition of extremum. If, furthermore, A is
of constant sign in all definitional domain of the function q' , then this

extremal determines a global extremum.
From (48) we find

MRy =Ry (8)-R2(C)=Ra(g5)-Ra(q), (52)

or, taking into account (33, 50),
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SRy ={+2((v} +ab,)-V(p")—v"-V(p +ab, )

, av' ,dW;+ab
_p'(("s"‘abv) di -V (Sdt V))

— p2-((vy + aby JA(y +ab, ) VAR

+2p-((vs +ab, )GO") ~V'G(V +ab,))
—p-F((vs +ab,)-v")

Taking into account (p20), we get:

G(vi +ab,) = G(vy) +a[G, (v}, b, )+ Gy (Vi b, )]+ aZG(bv).

Here (53) is transformed into

&Rz = mzo + ‘.R21a + mzzaz ,

(53)

4

(5)

where Rog, Ro1, Moo are functions not dependent on @, of the

form

p-(v' dv L d(vs))

S dt dt

= 4= 1 (AL ) = v"AW")+ 205V (p") =" V(p5 ) -

+2p- (VGO =v'G(vy)) = p- F (v =)

av" ,db, .,
: (bv d -V d;}) —H (vaVs + VSA(bV ))

+2(b, -V(p") ="V, ))+
2p(b,GO") = V(G (v, by )+ Go (v, b)) = p- F - by,

Ry =—4ib,A(b,) ~2p"G(b,).

Now we must find

82 (&R2 ) _ 9{22

8a2

(56)

» O7)

(58)

(59)
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This function depends on ¢'. To prove that the necessary condition
(40) is also a sufficient condition of global extremum of the functional

. . ! .
(47) with respect to function ¢ , we must prove that the integral

o’d, L
2 = [{{oR(q',.q"aV tdt (60)
8(1 0V
or, which is the same, the integral
2 T
¢ CD?— = [ §RypdV (dt (1)
oa® oy

is of constant sign. Similarly, to prove that the necessary condition (41)
is also a sufficient condition of a global extremum of the functional (47)

with respect to function ¢ " we have to prove that the integral similar to
(60) is also of the same sign.

Specifying the concepts, we will say that the Navier-Stokes
equations have a global solution, if for them there exists a unique non-
zero solution in a given domain of the fluid existence.

In the above-cited integrals the energy flow through the domain's
boundaries was not taken into account. Hence the above-stated may be
formulated as the following lemma

Lemma 1. The Navier-Stokes equations for incompressible fluid
have a global solution in an unlimited domain, if the integral (61, 58) has
constant sign for any speed of the flow.

2. Boundary conditions

The boundary conditions determine the power flow through the
boundaries, and, generally speaking, they may alter the power balance
equation. Let us view some specific cases of boundaries.

2.1. Absolutely hard and impenetrable walls

If the speed has a component normal to the wall, then the wall gets
energy from the fluid, and fully returns it to the fluid. (changing the
speed direction). The tangential component of speed is equal to zero
(adhesion effect). Therefore such walls do not change the system's
energy. However, the energy reflected from walls creates an internal
energy flow, circulating between the walls. So in this case all the above-
stated formulas remain unchanged, but the conditions on the walls
(impenetrability, adhesion) should not be formulated explicitly — they
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appear as a result of solving the problem with integrating in a domain
bounded by walls. Then the second lemma is valid:

Lemma 2. The Navier-Stokes equations for incompressible fluid
have a global solution in a domain bonded by absolutely hard and
impenetrable walls, if the integral (61, 58) is of the same sign for any flow
speed.

2.2. Systems with a determined external pressure

In the presence of external pressure the power balance condition
(17) is supplemented by one more component — the power of pressure
forces work

PS = pS : Vn > (62)
where
Py - external pressure,
S - surfaces where the pressure determined,

Vj; - normal component of flow incoming into above surface,

In this case the full action-2 is presented as follows:

T
@ = [{ [ R(q(x, y,2,0dV + [ R(q(x, y,z,0dV tdr-  (63)
ow S

For convenience sake let us consider the functions Q , determined
on the domain of the flow existence and taking zero value in all the

points of this domain, except the points belonging to the surface S.
Then the restraint (63) may be written in the form

T
D= j iﬁi(q(x,y,z, Hdv dt, (64)
oW
where energian-2
R(q) =R(q)+0-R(vy). (65)

One may note that here the last component is identical to the power of
body forces — in the sense that both of them depend only on the speed.
So all the previous formulas may be extended on this case also, by
performing substitution in them.

F=F+Q-pg/p. (66)

Therefore the following lemma is true:
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Lemma 3. The Navier-Stokes equations for incompressible fluid
have a global solution in a domain bounded by surfaces with a certain
pressures, if the integral (61, 58) has constant sign for any flow speed.

Such surface may be a free surface or a surface where the pressure
is determined by the problem's conditions (for example, by a given
pressure in the pipe section).

Note also that the pressure Pg¢ may be included in the full action

functional formally, without bringing in physical considerations. Indeed,
in the presence of external pressure there appears a new constraint -
(21a). In [3] it is shown that such problem of a search for a certain
functional with integral constraints (certain integrals of fixed values) is
equivalent to the search for the extremum of the of the sum of our
functional and integral constraint. More precisely, in our case we must
seek for the extremum of the following functional:

T
O = [ {Rg(x,y,z,0)4V tdt, (67)
ow

(68)
A-(-v-Vp+Q-ps-v,)

where A - an unknown scalar multiplier. It is determined or known

Rig(x.y..0) = {%(q(x, y,z,0)) + }

initial conditions [3]. For A=1 after collecting similar terms the
energian-2 (68) again assumes the form (65), which was to be proved.

2.3. Systems with generating surfaces

There is a conception often used in hydrodynamics of a certain
surface through which a flow enters into a given fluid volume with a
certain constant speed, i.e., NOT dependent on the processes going on
in this volume. The energy entering into this volume with this flow,
evidently will be proportional to squared speed module and is constant.
We shall call such surface a generating surface (note that this is to some
extent similar to a source of stabilized direct current whose magnitude
does not depend on the electric circuit resistance).

If there is a generating surface, the power balance condition (17) is
supplemented by another component — the power of flow with constant
squared speed module.

Ry = VVS2 Vi, (69)

TAC
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VVS - squared module of input flow speed,
S - surfaces where the pressure determined,

Vj; - normal component of flow incoming into above surface,

One may notice a formal analogy between WS‘ and Pg. So here

we also may consider the functional (64), where the energian-2 is

(@) =R(g)+0-RB(vy), (70)
and then perform the substitution
F:>F+Q-Wf/p. (71)

Consequently, the following lemma is true:

Lemma 4. The Navier-Stokes equations for incompressible fluid
have a global solution in a domain bounded by generating surface with a
certain pressure , if the integral (61, 58) has constant sign for any flow

speed.
Note also that WS the pressure P¢ may be included in the full

action-2  functional formally, without bringing in  physical

considerations.(similar with pressure Pg ). Indeed, in the presence of

external pressure there appears a new constraint - (21c). Including this
integral constraint into the problem of the search for functional's
extremum, we again get energian-2 (70).

2.4. Closed systems

We will call the system closed if it is bounded by
o absolutely hard and impenetrable walls,
o surfaces with certain external pressure,,
O generating surfaces, or
o not bounded by anything.

In the last case the system will be called absolutely closed. Such case
is possible. For example, local body forces in a bondless ocean create
such a system, and we shall discuss this case later. There is a possible
case when the system is bounded by walls, but there is no energy
exchange between fluid and walls. An example — a flow in endless pipe
under the action of axis body forces Such example will also be
considered below.

In consequence of Lemmas 1-4, the following theorem is true:

Theorem 1. The Navier-Stokes equations for incompressible fluid
have a global solution in a given domain, if

o the domain of fluid existence is closed,
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o theintegral (61, 58) has constant sign for any flow speed.

The free surface, which is under certain pressure, may also be the
boundary of a closed system. But the boundaries of this system are
changeable, and the integration must be performed within the fluid

volume. It is well known that the fluid flow through a certain surface S
is determined as

ws ={[p-div(v)-d®. (72)
S

Thus, the boundary conditions in the form of free surface are fully
considered, by the fact that the integration must be performed within the
changeable boundaries of the free surface.

We have indicated above, that the power of energy flow change is
determined by (10). In a closed system this power is equal to zero.
Therefore for such system the energian-2 (24) or (28) turns into
energian-2 (accordingly)

R(@)=EM+EBV)-EFV), (73)
d
iR(q):p-vj:Jr,u-v-Av—va. (74)
For such systems the Navier-Stokes equations take the form (1) and
ov
Pa—HAV—PFZO, (75)

Some examples of such system will be cited below.

3. Modified Navier-Stokes equations
From (p19a) we find that

(v-v)-v=A?)2. (76)
Substituting (706) in (2), we get
(v-v)-v=A?)2. 77)
Let us consider the value
D:(p+'[2)W2), (78)

which we shall call quasipressure. Then (77) will take the form
ov
p@——y-Av+VD—p-F:0, (79)
t
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The equations system (1, 79) will be called modified Navier-Stokes
equations. The solution of this system are functions Vv, D, and the

pressure may be determined from (9, 78). It is easy to see that the
equation (79) is much simpler than (2).

The above said may be formulated as the following lemma.

Lemma 5. If a given domain of incompressible fluid is described
by Navier-Stokes equations, then it is also described by modified Navier-
Stokes equations, and their solutions are similar.

Physics aside, we may note that from mathematical point of view the
equation (79) is a particular case of equation (2), and so all the previous
reasoning may be repeated for modified Navier-Stokes equations. Let us

do it.
The functional of split full action-2 (34) contains modified split

energian-2
R ok (v’dl - d_v] —u- (VA —V'AY)
R, (gq") = a " dr - (80)
+(div(v'- D")—div(v"- D)) - p- F(v' —v")
- see (33). Gradient of this functional with respect to function q' is (37)

and
bv,={2p-%—2y-Av'+2V(D”)—p-F}. (81)
- see (38). The components of equation (55) take the form
a' ., db
—p| b——V"— |— - (b,AV. +V.AD,
e R Y
+2(b,- V(D)= Vb, )- p- F-b,

8'{22 = _/“lva(bv) . (83)
Thus, for modified Navier-Stokes equations by analogy with
Theorem 1 we may formulate the following theorem
Theorem 2. Modified Navier-Stokes equations for incompressible
fluid have a global solution in the given domain, if

o the fluid domain of existence is a closed system

o the integral (61, 83) has the same sign for any fluid flow speed.
Lemma 6. Integral (61, 83) always has positive value.

Proof. Consider the integral

(82)

b

T
J=ul{fv-Amav pde (84)
ow
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This integral expresses the thermal energy, evolved by the liquid due to
internal friction. This energy is positive not depending on what function
connects the vector of speeds with the coordinates. A stricter proof of
this statement is given in Supplement 3. Hence, integral (84) is positive
for any speed. Substituting in (84) V = bv , we shall get integral (61, 83),
which is always positive, as was to be proved.

From Lemmas 5, 6 and Theorem 2 there follows a following.

Theorem 3. The equations of Navier-Stokes for incompressible
fluid always have a solution in a closed domain.

The solution of equation (1, 79) permits to find the speeds.
Calculation of pressures inside the closed domain with known speeds is
performed with the aid of equation (78) or

Vp+p(v-Vy=0. (85)

4. Conclusions

1. Among the computed volumes of fluid flow the closed volumes
of fluid flow may be marked, which do not exchange flow with adjacent
volumes — the so-called closed systems.

2. The closed systems are bounded by:

o Impenetworkrable walls,

o Surfaces, located under the known pressure,

0 Movable walls being under a known pressure,

o So-called generating surfaces through which the flow passes
with a known speed.

3. It may be contended that the systems described by Naviet-Stokes
equations, and having certain boundary conditions (pressures or speeds)
on all boundaries, are closed systems.

4. For closed systems the global solution of modified Navier-Stokes
equations always exists.

5. The solution of Navier-Stokes equations may always be found
from the solution of modified Navier-Stokes equations. Therefore, for
closed systems there always exists a global solution of modified Navier-
Stokes equations.

5. Computational Algorithm
The method of solution for hydrodynamics equations with a known
functional, having a global saddle point, is based on the following

outlines [7, 8]. For the given functional from two functions ¢j, ¢»

two more secondary functionals are formed from those functions
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qd1, qp. Each of these functionals has its own global saddle line.

Secking for the extremum of the main functional is substituted by
seeking for extremums of two secondary functionals, and we are moving
simultaneously along the gradients of these functionals. In general
operational calculus should be used for this purpose. However, in some
particular cases the algorithm may be considerably simplified.

Another complication is caused by the fact that in the computations
we have to integrate over all the flow area. But the area may be infinite,
and full integration is impossible. Nevertheless, the solution is possible
also for an infinite area, if the flow speed is damping.

The solution method consists in moving along the gradient towards
saddle point of the functional generated from the power balance
equation. The obtained solutions:

a. may be interpreted as experimentally found physical effects (for
instance, the walls impermeability, "sticking" of fluid to the walls,
absence of energy flow through a closed system),

b. coincide with solutions obtained earlier with the aid of other
methods (for instance, the solution of Poiseille problem),

c. may me seen as generalization of known solutions  (for instance,
a generalization of Poiseille problem solution for pipes with
arbitrary form of section and/or with arbitrary form of axis line),

d. belong to unsolved (as far as the author knows) problems (for
instance, problems with body as the functions of speed,
coordinates and time) .

Here we shall discuss only these particular cases.
Various examples are given in [4, 5].

6. Stationary Problems
Note that in stationary mode the equations (2.1, 2.2) assumes the
form

div(v) =0,
Vp— v+ p(v-Viv—pF =0

The modified equations (1, 79) in stationary mode take the form:
div(v) =0,
—u-Av+VD—p-F=0.

In Appendix 6 we considered the discrete version of modified Navier-
Stokes equations for stationary systems (2). It was shown that for
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stationary closed systems the solution of modified Navier-Stokes
equations is reduced to a search for quadratic functional minimum (and
not a saddle points, as in general case). After solving these equations the
pressure is calculated by the equation (2.78), 1.e.

2
p=D—’;W . 3)

or
szVD—p(V-V)VzO )
The equation (75) for absolutely closed systems in stationary mode
takes the form
— tAv — pF =0. (5)
The solution of equation (2) has been discussed in detail in Supplement
4. After solving it the pressures are calculated by the equation (4).

7. Dynamic Problems

7.1. Absolutely closed systems

Let us consider the equation (2.75) for absolutely closed systems and
rewrite is as

ov

o nAv—F =0 1)
where

n= z . @

Assuming that time is a discrete variable with step df, we shall
rewrite (1) as

v, —V,_

=y, = F, =0, ®
where 1 =1,2,3,... — the number of a time point. Let us write (3) as

A%

CZ—n-Avn—Fm:O, 4
where

v
F.=|F,+ ”—1]_ 5
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For a known speed V,_1 the value V, is determined by (4).

Solving this equation is similar to solving a stationary problem. On the
whole the algorithm of solving a dynamic problem for a closed system is
as follows

Algorithm 1

1. v,_1 and Fn are known
Computing v, by (4, 5).

3. Checking the deviation norm

ov, Ov, _
e=2rn =l ©)
ot ot

and, if it doesn't exceed a given value, the calculation is over.
pacder 3akanunBaerca. Otherwise we assign

vy <V, ™
and go to p. 1.

Example 1. Let the body forces on a certain time point assume
instantly a certain value — there is a jump of body forces. Then in the

initial moment the speed Vv, =0, and on the first iteration we assign

Vi—1 =0. Further we perform the computation according to
Algorithm 1.

7.2. Closed systems with variable mass forces and external

pressures

Consider the modified equation (1, 79) in the case when the mass
forces are sinusoidal functions of time with circular frequency @. In this
case equations (1, 79) take the form of equations with complex variables:

div(v) =0,
jro-pv—u-Av+VD—p-F=0,

where J - the imaginary unit.

C)

In [4, 5] the discrete version of these equations is considered. There
it is shown that their solution is reduced to the search of saddle point of
a certain function of complex variables. After solving these equations
the pressure is calculated by equation(4).
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8. Compressible fluid

In this section we shall use this principle for the Navier-Stokes
equations describing compressible fluid.

Navier-stokes equation for viscous compressible fluid are
considered. It is shown that these equations are the conditions of a
certain functional’s extremum. The method of finding the solution of
these equations is described. It consists of moving along the gradient
towards the extremum of his functional. The conditions of reaching this
extremum are formulated — they are simultaneously necessary and
sufficient conditions of the existence of this functional’s global extremum

8.1. The equations of hydrodynamics
In contrast with the equations for viscous incomptressible fluid, the
equations for viscous compressible fluid have the following form [2]:

%’t0+div(p-v):0, (4)

pf;:Wp_ﬂ.mp.c;(v)-p.z:—g‘Q(v)=o, ®

where

Q(v)=V(Vv). ©)
B npuaokennn dynkmun (3) u (6) IPEeACTaBACHBI B Pa3BEPHYTOM BHAC —
cm. (pl4, p29, p30). Aast cKEMaeMOH KHAKOCTH IIAOTHOCTB SBASCTCH
M3BECTHOH (DYHKIIMEI AABACHHSA:

p=f(p). 9

Further the reasoning will be by analogy with the previous. In this

case we have to consider also the power of energy loss variation in the
course of expansion/compression due to the friction.

R =" v-00). o)
We have also:

0 _H 10

o (BO)=200). (10)

We may note that the function €(V) in the present context

behaved in the same way as the function A(V). This allows to apply the
proposed method also for compressible fluids.
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8.2. Energian-2 and quasiextremal
By analogy with previous reasoning we shall write the formula for
quasiextremal for compressible fluid in the following form:

oq\ p

v
dt) 2 ov

(p-F-v)- _o- (D)

8.3. The split energian-2
By analogy with previous reasoning we shall write the formula for
split energian-2 for compressible fluid in the following form:

ok (V’dv _ V”dvj —u- (V’AV’ i V”AV")

2
|+ (divip-v'- pn)-div(p-v" p))+
Ro(q',q") =1 P - (12

p- (VGO —V'G())-p-F(v —v")-
2( dp ,,dpj H (o) — Ol
—| p—=p" == (VAW )=V"Qlv
2y P-4 oty vty
With the aid of Ostrogradsky formula (p23) we may find the variations of

. . . . . !
functional of spilt full action-2 with respect to functions ¢ :

My, 0
P
O R
gv} =b,, (14)

These variations are determined by varying the functions p’ and V',

whereas the functions 0, p",v" do not change. Then we shall get:
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Y A (LT | R
o P a T a )T

0
avl

2) [ - (VA —v"AV" )| = 2u- AV,

3) a‘i,[p(v’G(v”)—v"G(v'>)]=2p-{G(v",

) )
+ G|V, ,
oX oX

= 2grad( p”),

= —zdiv(p v,
P

4) av,[—p F(vV'=V")]=-p-F,

5 24 (vap)- m(w))} __2 o)
o' 3 3
ol2,.. DN .

6) | (div(p-v'-p")=div(p-v"-p')

P ]
a _2 . ! 1/ . 1/ 1 |

7 | S (divipv-p) = div(e- " p'))
P p ]
ol 2( .d .d 2d

5 O _(pp_ "ﬂ=—".
| P\ a 0 di

Remarks for these formulas:
1, 2, 3, 4) — the derivation is given below,
5) — is similar to formula 2),

(15)

0, 7) — the derivation is given in the Supplement 1 — see (p34, p35)

accordingly
Then we have:
dp .
b, =-2—"—-=2div(p-V"),
D & (o-V")
2p- CZ —2u-A(V')~ Z,f -Q(v')+2v(p")

b, =

+2p- G(v”, v J + G(v', v J
oX oX
As was shown above, the condition
b'=|b,, by|=0

and the similar condition

—p-F

(16)

17)

(18)
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"
b =|byr, byr|=0 (19)
Are necessary conditions for the existence of a saddle line. From the
symmetry of these equations it follows that the optimal functions q(') and
q6 , satisfying the equations (18, 19), must satisty also the condition
q0 = 40- (20)

Subtracting in pairs the equations (18, 19) taking into account (16, 17),
we get

-2 i"t) -2div(y' +v") =0, 1)

+2p-d(v;t_v)—2y-A(v'+v")—2éu-Q(v'+v”)+

G(V", avj + G(V’, avj +L=0 (22)

oX oX
o)
oX oX

Vauremas (1.45) u cokpamas (34, 35) Ha 2, moaygaem ypasuenus (4, 5),
TAC

+2V(p'+ p")-2p-F +2p-

' "

qd=40 T4, (23)
Taking into account (1.45) and cancelling (34, 35) by 2, we get the
equations (4, 5), where

8.4. About sufficient conditions of extremum

Above we have proved for incompressible fluid , that the necessary
conditions (18, 19) of the existence of extremum for the full action-2
functional are also sufficient conditions, if the integral

T
IZJ ffﬁzde dt (24)
ow
has constant sign, where
Ry =—ub,A(b,)=2pv"G(Dy). (25)

For compressible fluid the necessary conditions (18, 19) of the existence
of extremum for the full action-2 functional are also sufficient
conditions, if the integral (24) has constant sign , where, contrary to (25),
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Rz = b, ABy) = D,QAB) = 20V'G(). 29

For closed systems with a flow of cucrem incompressible fluid we
have shown above that the value (25) assumes the form

Rop =—ub,A(b,). 27)

Similarly, for closed systems with a flow of compressible fluid the value
(26) assumes the form

Rz = b, ABy) = D,QAB,). 28)

Let us consider now, similarly to (24), the integral

T
J = [{ [ RopdV it (29)
oly
where
Ry =—p-v-Av)- élv - Q(v). (30)

(i.e. in this formula instead of the function bv there is the function of

speed). As the proof of the integral’s constancy of sign must be valid for
any function, it is enough to prove the constancy of sign of integral (29)
with speeds. For this we must note that:
o the first term in (30) expresses the heat energy exuded by the
fluid as the result of internal friction,
o the second tem in (30) is the heat energy exuded/absorbed by the
fluid as the result of expansion\compression.
The first energy is positive regardless to the value of vector-function of
speed with respect to the coordinates (A more exact proof of this fact
for the first term is given in [4, 5]). The second term is equal to zero (as
in our statement the temperature is not taken into account, i.e. assumed
to be constant). Therefore, integral (24, 30) is positive on any iteration,
which was required to show.
Thus, the Navier-Stokes equations for incompressible fluid have a
global solution.

9. Discussion

Physical assumptions are often built on mathematical corollary facts.
So it may be legitimate to build mathematical assumption on the base of
physical facts. In this book there are several such places
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2. The equations are derived on the base of the presented principle
of general action extremum.

3. The main equation is divided into two independent equations
based on a physical fact — the absence of energy flow through a
closed system.

4. The exclusion of continuity conditions for closed systems is
based in the physical fact — the continuity of fluid flow in a
closed system

5. Usually in the problem formulation we indicate the boundaries
of solution search and the boundary conditions — for speed,
acceleration pressure on the boundaries These conditions
usually are formed on the base of physical facts, for example —
the fluid "adhesion" to the walls, the walls hardness, etc. In the
presented method we do not include the boundary conditions
into the problem formulation — they are found in the process
of solution.

We may point also some possible directions of this approach
development , for example
1. for problems of electro- and magneto-hydrodynamics
ii.  for free surfaces dynamics (in changing boundaries for constant
fluid volume).

The proof of global solution existence belongs to closed systems
Practically, we must analyze the bounded and closed systems. Therefore
some methods of formal transformation of non-closed systems into
closed ones are also proposed, such as:

1. long pipe as the limit of ring pipe,

2. transformation of a limited pipe segment into closed system

Supplement. Certain formulas
Here we shall consider the proof of some formulas that were used
in the main text. First of all we must remind that

ov
div(v)z{évx +—2 +8vz} D
& oy é
_ _|P P P 2
Vp = grad(p) {Gx’ay’ az} (P2)
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82vx_F62vx 62vx

Av, =
oar 92 et
62vx N 82vx N 82vx
ox> vt oz?
0%y 0%y 0%y
Av = 2y + L

(V-V)v: %

From (2.5, 2.7a) it follows that

pd(2 2, 2
szzath+vy+le
1e.
dv
P =pv—
1 ﬁwcﬁ

Let us consider the function (2.7) or

d(2 2
an,x(vx+vy+vz
P 1
— = +vyd(v)26+v)2;
p 2 dy
d(z 2
+VZ£VX+VJ;

P3)

()

(P>)

(PO)

®7)

(P8)

®9)
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or
Ps =’2’V.A(W2).

Differentiating, we shall get:

X

dv
vx(vx a;)x +v dy

After rearranging the items, we get

( dvx Vy . dvx]+
dy dz
dv
5_1, vy vy +v, —2 |+
yo, dy dz
G
ly 'z
Let us denote:
dv dv dv
gx:(vx d; +v) d; +v, dzx}
dv dv dv
Y Y Y
= + + ,
£ [v" d Yy C dz}
dv, dv, dv,
= +v + :
8z (Vx ax P ay F dzj

Let us consider the vector

(P92)

(p10)

(p11)

(p12)
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Ex
G=:g y (p13)
gy
or
i OV ‘v, ovy v, Oy
ox oy 0z
G=|vy Wy +v Wy +v, Py : P14
x 7 oy oz
i ov, ‘v, ov, v, ov,
| T Ox oy oz |
Note that
1
5 G(v)=2G(v/2) (pl4a)
From (p11-p14) we get
135/p =V Gs (p15)
oPs;(v,G(v
) #16
Comparing (p6) and (p14), we find that
G(v)=(-V. P18)
Thus,
oP;\v,G
oBs(v.G) _ p(v-V)v, (p19)
ov
Comparing (p9a, p15, p18), we find that
A?)=2-(v-¥)-v. (p192)
As dynamic pressure is determined [2] by
Py=pW?)2, 190
then from (p18, p19a) it follows that the gradient of dynamic pressure is
APy)=p-G. (p19d)
Let us consider also
G(v+b)=G(v)+G(b)+ Gy (v,b)+Gy(v,b), (p20)
where

107



Physics and Astronomy

ob,
ox

ob,,

ox
ob,
+v
Y ox
O0vy N
Ox
ov
Y
+b
Y ox
ov,
Ox

bx
Y ay

Vi +v

G (v,b)=|v, L +v (p202)

<

1%

bx

ov
y Y+ b
Oy
ov,
Oy

G,(v,b)=|b (p208)

Yooz |
ov,

b
z 0z

+b, +b,

If b=a-b,, then

G(v+a-b,)=G(v)+a’G(b,)+aGy(v,b,)+aG,(v,b,). p21)
We have

0o
o'

aO

9

o'
aO
ov

o

o'

!

(v” dv’) _ av" 0, (v” dv'j _ dv'
dt dt’ov'\" dt) dt’
(v'Av') =2AV",
060)=-6[ .2 | 060 =6(v),
oX ) o'
! 14 14 8 14 14 M 14
2 (-v(p")=V(p"), ap‘),,(v -V(p"))=—div(v').
div(v'- p")= V(p"),aaoﬂdiv(v' - p")=—div(v')-see. (p31).
P

(P22)

The necessary conditions for extremum of functional from the
functions with several independent wvariables — the Ostrogradsky
equations [3] have for each of the functions the form
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Wf U ¥ {%WH:O, (p23)

ov  ov da\ o(dv/da)

a=x,y,z,t
where f — the integration element, v(x,y,z,t) — the variable function, @ —
independent variable.

)= [ 6(div(v)) | o(div(v)) | a(div(v))} 029)
ox oy oz
0%y . 0 %y y 62VZ
+ +
o2 Ox0y  Ox0z
2

2 2
0%vy [ OVy 9%y, | (p30)

Q)= + +
) oxdy  gy?  Oyoz

szx azvy 82vz
+ +
ox0z 0yoz  pg?
If p, p are scalar fields, and V is a vector field, then
div(p-v)=v-grad(p)+ p-div(v), ©31)
div(p-p-v)=p-v-grad(p)+p-div(p-v), (p32)

Le.
div(p-p-v)=p-v-gradp)+ p-v-gradp)+ p- p-div(v). (p33)
Consider div(o-p'-v") and suppose that the extremum of a
certain functional is determined or by varying the function p’, or by

varying the function V" . Then, differentiating the last expression by
Ostrogradsky formula (p23), we shall find:

20, [div(p- p'-v")]|=0+v"-gradp)+ p-div(v"),
Y
a : 1 " 14 1 !
o [div(p- p'-v")]=p-grad(p’)+ p'- grad(p) - p'- grad(p)
or
% [div(p- p'v")]=div(p-v"), 034
op
a b 12 14 14
o [div(p- p'-v")]= p- grad(p'). (p35)
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