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The existence and the search method for 
global solutions of Navier-Stokes equation 

 
Annotation 

We formulate and prove the variational extremum principle for 
viscous incompressible and compressible fluid, from which principle 
follows that the Naviet-Stokes equations represent the extremum 
conditions of a certain functional. We describe the method of seeking 
solution for these equations, which consists in moving along the gradient 
to this functional extremum. We formulate the conditions of reaching 
this extremum, which are at the same time necessary and sufficient 
conditions of this functional global extremum existence. 

Then we consider the so-called closed systems. We prove that for 
them the necessary and sufficient conditions of global extremum for the 
named functional  always exist. Accordingly, the search for global 
extremum is always successful, and so the unique solution of Naviet-
Stokes is found.  

We contend that the systems described by Naviet-Stokes equations 
with determined boundary solutions (pressure or speed) on all the 
boundaries, are closed systems. We show that such type of systems 
include systems bounded by impenetworkrable walls, by free space under 
a known pressure, by movable walls under known pressure, by the so-
called generating surfaces, through which the fluid flow passes with a 
known speed. 
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Introduction 
In his previous works [6-8] the author presented the full action 

extremum principle, allowing to construct the functional for various 
physical systems, and, which is most important, for dissipative systems. 
In [4, 5, 9] this principle is described applied to the hydrodynamics of  
incompressible fluid. There one may find multiple examples of this 
principle  use for the solution of specific problems.  In this paper the 
author is using a more strict extension of this principle for the powers [6] 
and considers also the hydrodynamics of incompressible fluid. 

Here we are discussing the Navier-Stokes equations for viscous 
incompressible fluid.  We show that these equations are the conditions of 
a certain functional’s extremum. A solution method for these equation is 
described  - it consists of moving by the gradient in the direction of this 
functional’s extremum.   The conditions of reaching this extremum are 
formulated – they are simultaneously necessary and sufficient conditions 
of the existence of this functional’s global extremum.  

Then we separate the so-called closed systems. For them it is proved 
that the necessary and sufficient conditions of the existence of this 
functional’s global extremum are always valid Thereafter, the method of 
searching for global extremum always gives a positive result, and hence 
the sole solution of the Navier-Stokes equations is found.   

It is stated that the systems described by Navier-Stokes equations, 
having definite boundary conditions (of pressure or speed) on all the 
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boundaries, are closed systems. It is shown that such systems include the 
systems bounded by 

o impenetrable walls ,  
o free surfaces  that are under   known pressure, 
o movable walls  that are under   known pressure, 
o so-called generating surfaces through which the flows passes 

with known speed.   
In this way we have shown that the Navier-Stokes equations have 

only one solution.   
 

1. Viscous incompressible fluid 
1.1. Hydrodynamic equations for viscous incompressible fluid 
The hydrodynamic equations for viscous incompressible liquid are as 

follows [2]: 
0)(div =v ,       (1) 

( ) 0=−∇⋅+∆−∇+
∂
∂ Fvvvp

t
v ρρµρ ,   (2) 

where 
const=ρ   is constant density, 

µ  - coefficient of internal friction, 
p  - unknown pressure, 

[ ]zyx vvvv ,,=  - unknown speed, vector,  

[ ]zyx FFFF ,,=  - known mass force, vector, 

tzyx ,,,  - space coordinates and time. 
 
1.2. The power balance 
Umov [1] discussed for the liquids the condition of balance for  

specific (by volume) powers in a liquid flow.  For a non-viscous and 
incompressible liquid this condition is of the form (see (56) in [1]) 

0),()()( 451 =++ vpPvPvP ,    (3) 
and for viscous and incompressible liquid - another form (see (80) in [1]) 

0),()()( 251 =++ vpPvPvP ,    (4) 
where 

t
WP
∂

∂
=

2
1 2

ρ ,       (5) 
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pvP ∇⋅=4 ,      (7) 

⎟
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⎠
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dz
dWv
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dWv
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dWvP zyx

222
5 2

1 ρ ,   (8) 

( )2222
zyx vvvW ++=      (9) 

xyp  and so on – tensions (see [2]). 

Here 1P  is the power of energy variation, 4P  is the power of work of 
pressure variation, 5P  - the power of variation of energy variation for 
direction change, and the value 

),()(),( 457 vpPvPvpP +=             (10) 
is, as it was shown by Umov, the variation of energy flow power through 
a given liquid volume – see (56) и (58) в [1]. In [2] it was shown, that for 
incompressible liquid the following equality is valid 

vp
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From this it follows that 
( )vpvP ∆⋅−∇= µ2              (12) 

or, subject to (6), 

342 PPP −=               (13) 
where 
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vvP ∆⋅⋅= µ3              (14) 
- power of change of energy loss for internal friction during the motion. 
Therefore, we rewrite (4) in the form 

0)(),()()( 3451 =−++ vPvpPvPvP ,          (15) 
We shall supplement the condition (15) by mass forces power 

FvP ρ=6 .               (16) 
Then for every viscous incompressible liquid this balance condition is of 
the form 

0)()(),()()( 63451 =−−++ vPvPvpPvPvP .         (17) 
Taking into condition(1) and formula (p1a) let us rewrite (7) in the form 

( )pvP ⋅= div4 ,            (18) 
Taking into account (p9a), condition(1) and formula (p1a) let us rewrite 
(8) in the form 

( )2
5 div WvP ⋅= .            (19) 

From (18, 19) and Ostrogradsky formula  (p28) we find: 
( ) ∫∫∫∫∫∫∫∫ ⋅⋅=⋅=

S
n

VV
dSvpdVpvdVP div4 ,        (20) 

( ) ∫∫∫∫∫∫∫∫ ⋅⋅=⋅=
S

n
VV

dSvWdVWvdVP 22
5 div       (20а) 

or, subject to (р15), 
( ) ∫∫∫∫∫∫∫∫ ⋅⋅=⋅=

S
n

VV

dSvWdVvGvdVP 2
5 )( .        (21) 

Returning again to the definitions of powers (7, 8), we will get 
( ) ∫∫∫∫∫ ⋅⋅=∇⋅

S
nS

V
dSvpdVpv ,         (21а) 

( )( ) ∫∫∫∫∫ ⋅⋅=∇⋅
S

n
V

dSvWdVWv 22         (21в) 

or 

( ) ∫∫∫∫∫ ⋅⋅=⋅
S

n
V

dSvWdVvGv 2)( .         (21с) 

 
1.3. Energian-2 and quasiextremal 
For further discussion we shall assemble the unknown functions 

into a vector 
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[ ] [ ]zyx vvvpvpq ,,,, ==  .            (22) 

This vector and all its components are functions of ),,,( tzyx . We are 
considering a liquid flow in volume V . The full action-2 [6] in 
hydrodynamics takes a form 

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
ℜ=Φ

T

V
dtdVtzyxq

0
),,,(( ,            (23) 

Having in mind (17) the definition of energian-2 in [6], let us write the 
energian-2 in the following form: 

)()()()(
2
1)()( 65431 vPvPqPvPvPq −++−=ℜ .           (24) 

Below in Supplement 1 will be shown – see (р4, р13, р15): 

dt
dvvP ⋅= ρ1 ,               (25) 

),(5 vGvP ⋅⋅= ρ                (26) 
where 

( )vvvG ∇⋅=)( .               (27) 
Taking this into account let us rewrite the energian-2 (24) in a detailed 
form 

( ) FvvGvpvvv
dt
dvvq ρρµρ −⋅⋅+⋅+∆⋅⋅−⋅=ℜ )(div

2
1)( .  (28) 

Further we shall denote the derivative computed according to 

Ostrogradsky formula (р23), by the symbol 
v
o
∂
∂

, as distinct  from 

ordinary derivative 
v∂
∂

.  Taking this into account (р16),  we get 
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In accordance with [6]  we write the quasiextremal in the following form:  
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From (29) it follows that the quasiextremal (30) after differentiation 
coincides with equations (1, 2). 

 
1.4. The split energian-2 
Let us consider the split functions (22) in the form 

[ ] [ ]zyx vvvpvpq ′′′′=′′=′ ,,,, ,            (31) 

[ ] [ ]zyx vvvpvpq ′′′′′′′′=′′′′=′′ ,,,, .            (32) 
Let us present the split energian-2 taking into account the formula (р15) 
in the form 

( )
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)()(
divdiv2),(2 .          (33) 

Let us associate with the functional (23) functional of split full 
action-2 

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′′ℜ=Φ
T

V
dtdVqq

0
22 ),( ,             (34) 

With the aid of Ostrogradsky formula (р23) we may find the variations of 
functional (34) with respect to functions q′ . In this we shall take into 
account  the formulas (р21), obtained in the Supplement 1. Then we 
have: 

p
o b
p ′=
′∂
ℜ∂ 2 ,               (35) 

v
o b
v ′=
′∂
ℜ∂ 2 ,               (36) 

)(div2 vbp ′′=′ ,              (37) 
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So, the vector  
[ ]vp bbb ′′=′ ,                (39) 

is a variation of functional (34), and the condition 
[ ] 0, ==′ ′′ vp bbb                (40) 

is the necessary condition for the existence of the extremal line. Similarly, 
[ ] 0, ==′′ ′′′′ vp bbb               (41) 

The equations (40, 41) are necessary condition for the existence of a 
saddle line. By symmetry of these equations we conclude that the optimal 
functions 0q′  and 0q ′′ , satisfying these equations, satisfy also the 
condition 

00 qq ′′=′ .              (42) 
Subtracting in couples the equations (40, 41) taking into consideration 
(37, 38), we get 

0)(2div =′′+′ vv ,              (43) 
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Fppvv
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ρ

ρµρ
.  (44) 

For vv ′′=′  according to (р12), we have 

( ) ( ) ( )vvG
X
vvGvG

X
vvGvG ′′+′=⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
′∂′′+′+⎟

⎠
⎞

⎜
⎝
⎛

∂
′′∂′+′′ ,, .    (45) 

Taking into account (27, 45) and reducing (43, 44) by 2, получаем we get 
the equations (1, 2), where   

oo qqq ′′+′=             (46) 
- see (22, 31, 32), i.e. the equations of extremal line are Naviet-Stokes 
equations. 

 
1.5. About sufficient conditions of extremum 
Let us rewrite the functional (34) in the form 
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где векторы qq ′′′, определенны по (31, 32), ( )tzyxX ,,,=  – вектор 
независимых переменных. Далее будем варьировать только 
функции ( ) [ ])(),( XvXpXq ′′=′ .  

Vector b , defined by (39), is a variation of functional 2Φ  by the 
function q′  and depends on function q′ , i.e. ( )qbb ′= . Here the 
function q ′′  here is fixed.  

Let S  be an extremal, and subsequently, the gradient in it is 0=sb . 
To find out which type of extremum we have, let us look at the sign of 
functional's increment 

( ) ( )CS 222 Φ−Φ=Φδ ,             (48) 
where С is the line of comparison, where   0≠= сbb . Let the values 
vector q′  on lines S  и С differ by  

baqqqqq SSC ⋅=′=′−′=′−′ δ ,            (49) 
where b  is the variation on the line  С, а – a known number. Thus,  

.
v

p

S

S
S b

b
a

v
p

baqq +
′
′

=⋅+′=′             (50) 

where vp bb ,  are determined by (35, 36) accordingly, and do not 

depend on q′ .   
If  

Aa ⋅=Φ2δ ,              (51) 
where A  has a constant sign  in the vicinity of extremal 0=sb , then 
this extremal is  sufficient condition of extremum. If, furthermore, A  is 
of constant sign in all definitional domain of the function q′ , then this 
extremal determines a global extremum.  

From (48) we find 
( ) ( ) ( ) ( )qqCS S ′ℜ−′ℜ=ℜ−ℜ=ℜ 22222δ ,         (52) 

or, taking into account (33, 50), 
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Taking into account (р20), we get: 
( ) ( )[ ] )(,,)()( 2

21 vvsvssvs bGabvGbvGavGabvG +′+′+′=+′ .      (54) 
Here (53) is transformed into 

2
2221202 aa ℜ+ℜ+ℜ=ℜδ ,            (55) 

where 222120 ,, ℜℜℜ  are functions not dependent on а, of the 
form 
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)(2)(22 vvv bGvbb ′′−∆−=ℜ ρµ .           (58) 
Now we must find 
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a
δ

              (59) 
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This function depends on q′ . To prove that  the necessary condition 
(40) is also a sufficient condition of global extremum of the functional 
(47) with respect to function q′ , we must prove that the integral 

∫ ∫
⎪⎭
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⎪
⎨
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∂
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22
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),(             (60) 

or, which is the same,   the integral 

∫ ∫
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⎪
⎬
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⎪
⎨
⎧
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∂

Φ∂ T

V
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222

2
2

             (61) 

is of constant sign. Similarly, to prove that  the necessary condition (41) 
is also a sufficient condition of a global extremum of the functional (47) 
with respect to function q ′′ , we have to prove that the integral similar to 
(60)  is also of the same sign. 

Specifying the concepts, we will say that the Navier-Stokes 
equations have a global solution, if for them there exists a unique non-
zero solution in a given domain of the fluid existence. 

In the above-cited integrals the energy flow through the domain's 
boundaries was not taken into account. Hence the above-stated may be 
formulated  as the following lemma 

Lemma 1. The Navier-Stokes equations for incompressible fluid 
have a global solution in an unlimited domain, if the integral  (61, 58)  has 
constant sign for any speed of the flow.  

 
2. Boundary conditions 
The boundary conditions determine the power flow through the 

boundaries, and, generally speaking, they may alter the power balance 
equation. Let us view some specific cases of boundaries.   

 
2.1. Absolutely hard and impenetrable walls 
If the speed has a component normal to the wall, then the wall gets 

energy from the fluid, and fully returns it to the fluid. (changing the 
speed direction). The tangential component of speed is equal to zero 
(adhesion effect). Therefore such walls do not change the system's 
energy. However, the energy reflected from walls creates an internal 
energy flow, circulating between the walls. So in this case all the above-
stated formulas remain unchanged, but the conditions on the walls 
(impenetrability, adhesion) should not be formulated explicitly – they 
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appear as a result of solving the problem with integrating in a domain 
bounded by walls. Then the second lemma is valid: 

Lemma 2. The Navier-Stokes equations for incompressible fluid 
have a global solution in a domain bonded by absolutely hard and 
impenetrable walls, if the integral (61, 58) is of the same sign for any flow 
speed. 

 
2.2. Systems with a determined external pressure 
In the presence of external pressure the power balance condition 

(17)  is supplemented by one more component – the power of pressure 
forces work 

ns vpP ⋅=8 ,              (62) 
where 

sp  - external pressure, 
S  - surfaces where the pressure determined, 

nv  - normal component of   flow incoming into above surface, 
In this case the full action-2 is presented as follows:  

∫ ∫∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+ℜ=Φ
T

SV
dtdVtzyxqPdVtzyxq

0
8 ),,,((),,,(( .     (63) 

For convenience sake let us consider the functions Q , determined 
on the domain of the flow existence and taking zero value in all the 
points of this domain, except the points belonging to the surface S . 
Then the restraint (63)  may be written in the form 

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ℜ=Φ
T

V
dtdVtzyxq

0
),,,((ˆ ,           (64) 

where  energian-2 
)()()(ˆ 8 nvPQqq ⋅+ℜ=ℜ .            (65) 

One may note that here the last component is identical to the power of 
body forces – in the sense that both of them depend only on the speed. 
So all the previous formulas may be extended on this case also, by 
performing substitution in them.    

ρspQFF ⋅+⇒ .            (66) 
Therefore the following lemma is true: 
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Lemma 3. The Navier-Stokes equations for incompressible fluid 
have a global solution in a domain bounded by surfaces with a certain 
pressures, if the integral  (61, 58)  has constant sign for any flow speed. 

Such surface may be a free surface or a surface where the pressure 
is determined by the problem's conditions (for example, by a given 
pressure in the pipe section).  

Note also that the pressure sp  may be included in the full action 
functional formally, without bringing in physical considerations. Indeed, 
in the presence of external pressure there appears a new constraint - 
(21а). In [3] it is shown that such problem of a search for a certain 
functional with integral constraints (certain integrals of fixed values) is 
equivalent to the search for the extremum of the of the sum  of our 
functional and integral constraint. More precisely, in our case we must 
seek for the extremum of the following functional:   

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
ℜ=Φ

T

V
dtdVtzyxq

0
)),,,((ˆ ,           (67) 

( )⎭
⎬
⎫

⎩
⎨
⎧

⋅⋅+∇⋅⋅
+ℜ

=ℜ
ns vpQpv

tzyxq
tzyxq

-
)),,,((

),,,((ˆ
λ

,         (68) 

where λ  – an unknown scalar multiplier. It is determined or known 
initial conditions [3]. For 1=λ  after collecting similar terms the 
energian-2 (68) again assumes the form (65), which was to be proved. 
 

2.3. Systems with generating surfaces 
There is a conception often used in hydrodynamics of a certain 

surface through which a flow enters into a given fluid volume with a 
certain constant speed, i.e., NOT dependent on the processes going on 
in this volume. The energy entering into this volume with this flow, 
evidently will be proportional to squared speed module and is constant. 
We shall call such surface a generating surface (note that this is to  some 
extent similar to a source of stabilized direct current whose magnitude 
does not depend on the electric circuit resistance). 

If there is a generating surface, the power balance condition (17) is 
supplemented by another component – the power of flow with constant 
squared speed module.  

ns vWP ⋅= 2
9 ,             (69) 

где 
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sW  - squared module of input flow speed, 
S  - surfaces where the pressure determined, 

nv  - normal component of   flow incoming into above surface, 

One may notice a formal analogy between  sW  and sp . So here 
we also may consider the functional (64),  where the energian-2 is 

)()()(ˆ 9 nvPQqq ⋅+ℜ=ℜ ,             (70) 
and then perform the substitution 

ρ2
sWQFF ⋅+⇒ .             (71) 

Consequently, the following lemma is true: 
Lemma 4. The Navier-Stokes equations for incompressible fluid 

have a global solution in a domain bounded by generating surface  with a 
certain pressure , if the integral  (61, 58)  has constant sign for any flow 
speed. 

Note also that sW  the pressure sp  may be included in the full 
action-2 functional formally, without bringing in physical 
considerations.(similar with pressure sp  ). Indeed, in the presence of 
external pressure there appears a new constraint - (21c). Including this 
integral constraint into the problem of the search for functional's 
extremum, we again get energian-2 (70). 

 
2.4. Closed systems 
We will call the system closed if it is bounded by   

o absolutely hard and impenetrable walls, 
o surfaces with certain external pressure,, 
o generating surfaces, or 
o not bounded by anything. 

In the last case the system will be called absolutely closed. Such case 
is possible. For example, local body forces in a bondless ocean create 
such a system, and we shall discuss this case later. There is a possible 
case when the system is bounded by walls, but there is no energy 
exchange between fluid and walls. An example – a flow in endless pipe 
under the action of axis body forces Such example will also be 
considered below. 

In consequence of Lemmas 1-4, the following theorem is true:  
Theorem 1. The Navier-Stokes equations for incompressible fluid 

have a global solution in a given domain, if  
o the domain of fluid existence is closed, 
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o the integral  (61, 58)  has constant sign for any flow speed. 
 
The free surface, which is under certain pressure, may also be the 

boundary of a closed system. But the boundaries of this system are 
changeable, and the integration must be performed within the fluid 
volume. It is well known  that the fluid flow through a certain surface S  
is determined as 

Θ⋅⋅= ∫∫ dvw
S

S )(divρ .            (72) 

Thus, the boundary conditions in the form of free surface are fully 
considered, by the fact that  the integration must be performed within the 
changeable boundaries of the free surface. 

 
We have indicated above, that the power of energy flow change is 

determined by (10). In a closed system this power is equal to zero. 
Therefore for such system the energian-2 (24) or (28) turns into 
energian-2 (accordingly) 

)()()()( 631 vPvPvPq −+=ℜ ,             (73) 

Fvvv
dt
dvvq ρµρ −∆⋅⋅+⋅=ℜ )( .            (74) 

For such systems the Navier-Stokes equations take the form (1) and  

0=−∆−
∂
∂ Fv

t
v ρµρ ,            (75) 

Some examples of such system will be cited below. 
 

3. Modified Navier-Stokes equations 
From (p19a) we find that 

( ) ( ) 22Wvv ∆=⋅∇⋅ .            (76) 
Substituting (76) in (2), we get    

( ) ( ) 22Wvv ∆=⋅∇⋅ .            (77) 
Let us consider the value 

⎟
⎠
⎞

⎜
⎝
⎛ += 2

2
WpD ρ

,            (78) 

which we shall call quasipressure.  Then  (77) will take the form 

0=⋅−∇+∆⋅−
∂
∂ FDv

t
v ρµρ .          (79) 
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The equations system (1, 79) will be called  modified Navier-Stokes 
equations. The solution of this system are functions Dv, , and the 
pressure may be determined from (9, 78). It is easy to see that the 
equation  (79) is much simpler than (2). 

The above said may be formulated as the following lemma. 
Lemma 5. If a given domain of incompressible fluid is described 

by Navier-Stokes equations, then it is also described by modified Navier-
Stokes equations, and their solutions are similar.   

Physics aside, we may note that from mathematical point of view the 
equation (79) is a particular case of equation (2), and so all the previous 
reasoning may be repeated for modified Navier-Stokes equations. Let us 
do it.   

The functional of split full action-2 (34) contains modified split 
energian-2  

( )

( ) ( )( ) ( )⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

′′−′⋅−′⋅′′−′′⋅′+

′′∆′′−′∆′⋅−⎟
⎠
⎞

⎜
⎝
⎛ ′

′′−
′′

′⋅−
=′′′ℜ

vvFDvDv

vvvv
dt
vdv

dt
vdv

qq
ρ

µρ

divdiv
),(2 .        (80) 

- see (33). Gradient of this functional with respect to function q′  is (37) 
and  

( )
⎭
⎬
⎫

⎩
⎨
⎧ ⋅−′′∇+′∆⋅−

′′
⋅=′ FDv

dt
vdbv ρµρ 222 .         (81) 

- see  (38). The components of equation (55)  take the form 

( )( )

( ) ( )( ) ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⋅⋅−∇⋅′′−′′∇⋅+

∆′+′∆⋅−⎟
⎠
⎞

⎜
⎝
⎛ ′′−

′′
⋅−

=ℜ

vpv

vssv
v

v

bFbvDb

bvvb
dt
dbv

dt
vdb

ρ

µρ

2
21 ,        (82) 

)(22 vv bb ∆−=ℜ µ .            (83) 
Thus, for modified Navier-Stokes equations by analogy with 

Theorem 1 we may formulate the following theorem 
Theorem 2. Modified Navier-Stokes equations for incompressible 

fluid have a global solution in the given domain, if   
o the fluid domain of existence is a closed system 
o the integral (61, 83) has the same sign for any fluid flow speed.   
Lemma 6. Integral (61, 83) always has positive value. 
Proof. Consider the integral 

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∆⋅=
T

V
dtdVvvJ

0
)(µ              (84) 
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This integral expresses the thermal energy, evolved by the liquid due to 
internal friction. This energy is positive not depending on what function 
connects the vector of speeds with the coordinates. A stricter proof of 
this statement is given in Supplement 3. Hence, integral (84) is  positive 
for any speed. Substituting in (84) vbv = , we shall get integral (61, 83), 
which is always positive, as was to be proved. 

From Lemmas 5, 6 and Theorem 2 there follows a following. 
Theorem 3. The equations of Navier-Stokes for incompressible 

fluid always have a solution in a closed domain.  
The solution of equation (1, 79) permits to find the speeds. 

Calculation of pressures inside the closed domain with known speeds is 
performed with the aid of equation (78) or 

( ) 0=∇⋅+∇ vvp ρ .             (85) 
 
4. Conclusions 
1. Among the computed  volumes of fluid flow the closed volumes 

of fluid flow may be marked, which do not exchange flow  with adjacent 
volumes – the so-called closed systems. 

2. The closed systems are bounded by:  
o Impenetworkrable walls, 
o Surfaces, located under the known pressure, 
o Movable walls being under a known pressure,  
o So-called generating surfaces through which the flow passes 

with a known speed.  
3. It may be contended that the systems described by Naviet-Stokes 

equations, and having certain boundary conditions (pressures or speeds) 
on all boundaries, are closed systems.  

4. For closed systems the global solution of modified Navier-Stokes 
equations always exists. 

5. The solution of Navier-Stokes equations may always be found  
from the solution of modified Navier-Stokes equations. Therefore, for 
closed systems there always exists a global solution of modified Navier-
Stokes equations. 

 
5. Computational Algorithm 

The method of solution for hydrodynamics equations with a known 
functional, having a global saddle point, is based on the following 
outlines [7, 8]. For  the given functional from two functions 21, qq  
two more secondary functionals are formed from those functions 
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21, qq . Each of these functionals has its own global saddle line. 
Seeking for the extremum of the main functional is substituted by 
seeking for extremums of two secondary functionals, and we are moving 
simultaneously along the gradients of these functionals. In general   
operational calculus should be used for this purpose. However, in some 
particular cases the algorithm may be  considerably simplified. 

Another complication is caused by the fact that in the computations 
we have to integrate over all the flow area. But the area may be infinite, 
and full integration is impossible. Nevertheless, the solution is possible 
also for an infinite area,  if the flow speed is damping. 

 
The solution method consists in moving along the gradient towards 

saddle point of the functional generated from the power balance 
equation. The obtained solutions:    

a. may be interpreted as experimentally found physical effects  (for 
instance, the walls impermeability, "sticking" of fluid to the walls, 
absence of energy flow through a closed system), 

b. coincide with solutions obtained earlier with the aid of other 
methods   (for instance, the solution of Poiseille problem), 

c. may иe seen as generalization of known solutions   (for instance,  
a generalization of Poiseille problem solution for pipes with 
arbitrary form of section and/or with arbitrary form of axis line), 

d. belong to unsolved (as far as the author knows) problems (for 
instance, problems with body as the functions of speed, 
coordinates and time) . 

Here we shall discuss only these particular cases. 
Various examples are given in [4, 5]. 

 
6. Stationary Problems 

Note that in stationary mode the equations (2.1, 2.2) assumes the 
form 

( ) .
0

,0)(div

⎩
⎨
⎧

=−∇⋅+∆−∇
=

Fvvvp
v

ρρµ
.   (1) 

The modified equations (1, 79) in stationary mode take the form: 

⎩
⎨
⎧

=⋅−∇+∆⋅−
=

.0
,0)(div

FDv
v

ρµ
.    (2) 

In Appendix 6 we considered the discrete version of modified Navier-
Stokes equations for stationary systems (2). It was shown that for 
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stationary closed systems the solution of modified Navier-Stokes 
equations is reduced to a search for quadratic functional minimum (and 
not a saddle points, as in general case). After solving these equations the 
pressure is calculated by the equation (2.78), i.e. 

2
2

WDp ρ
−= .      (3) 

or 
( ) 0=∇⋅−∇=∇ vvDp ρ     (4) 

The equation (75) for absolutely closed systems in stationary mode 
takes the form    

0=−∆− Fv ρµ .      (5) 
The solution of equation (2) has been discussed in detail in Supplement 
4. After solving it  the pressures are calculated by the equation (4). 
 

7. Dynamic Problems 
7.1. Absolutely closed systems 
Let us consider the equation (2.75) for absolutely closed systems and 

rewrite is as 

0=−∆−
∂
∂ Fv

t
v η       (1) 

where 

ρ
µη = .       (2) 

Assuming that time is a discrete variable with step dt , we shall 
rewrite (1) as 

01 =−∆−
− −

nn
nn Fv

dt
vv η ,    (3) 

where ,...3,2,1=n  – the number of a time point. Let us write (3) as 

01 =−∆⋅− nn
n Fv

dt
v η .     (4) 

where 

⎟
⎠
⎞

⎜
⎝
⎛ += −

dt
vFF n

nn
1

1 .     (5) 
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For a known speed 1−nv  the value nv  is determined  by (4). 
Solving this equation is similar to solving a stationary problem. On the 
whole the algorithm of solving a dynamic problem for a closed system  is 
as follows 
 

Algorithm 1 
1.   1−nv  and nF  are known 
2. Computing nv  by (4, 5). 
3. Checking the deviation norm 

t
v

t
v nn

∂
∂

−
∂
∂

= −1 ε       (6) 

and, if it doesn't exceed a given value, the calculation is over.  
расчет заканчивается. Otherwise we assign  

nn vv ⇐−1       (7) 
and go to p. 1. 

 
Example 1. Let the body forces on a certain time point assume 

instantly a certain value – there is a jump of body forces. Then in the 
initial moment the speed 0=ov , and on the first iteration we assign 

01 =−nv . Further we perform the computation according to 
Algorithm 1. 

 
7.2. Closed systems with variable mass forces and external 
pressures 
Consider the modified equation (1, 79) in the case when the mass 

forces are sinusoidal functions of time with circular frequency ω . In this 
case equations (1, 79) take the form of equations with complex variables: 

⎩
⎨
⎧

=⋅−∇+∆⋅−⋅⋅⋅
=

,0
,0)(div

FDvvj
v

ρµρω
.            (8) 

where j  - the imaginary unit. 
In [4, 5] the discrete version of these equations is considered. There 

it is shown that their solution is reduced to the search of saddle point  of 
a certain function of complex variables. After solving these  equations 
the pressure is calculated by equation(4). 
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8. Compressible fluid 
In this section we shall use this principle for the Navier-Stokes 

equations describing  compressible  fluid.  
Navier-stokes equation for viscous compressible fluid are 

considered. It is shown that these equations are the conditions of a 
certain functional’s extremum. The method of finding  the solution of 
these equations is described. It consists of moving along the gradient 
towards the extremum of his functional. The conditions of reaching this 
extremum are formulated – they are simultaneously necessary and 
sufficient conditions of the existence of this functional’s global extremum   

 
8.1. The equations of hydrodynamics   

In contrast with the equations for viscous  incompressible fluid, the 
equations for viscous compressible  fluid have the following form [2]: 

( ) 0div
t

=⋅+
∂
∂ vρρ

,      (4) 

( ) ( ) 0
3

=Ω−⋅−⋅+∆⋅−∇+
∂
∂ vFvGvp

t
v µρρµρ , (5) 

where 
( ) ( )vv ∇∇=Ω .      (6) 

В приложении функции (3) и (6) представлены в развернутом виде – 
см. (р14, р29, р30). Для сжимаемой жидкости плотность является 
известной функцией давления: 

( )pf=ρ .       (7) 
Further the reasoning will be by analogy  with the previous. In this 

case we have to consider also the power of energy loss variation in the 
course of  expansion/compression due to the friction.  

)(
3

)(8 vvvP Ω⋅=
µ

.      (9) 

We have also: 

( ) )(
3

)(8 vvP
v

Ω=
∂
∂ µ .              (10) 

We may note that the function )(vΩ  in the present context 
behaved in the same way as the function )(v∆ . This allows to apply the 
proposed method also for compressible fluids.  
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8.2. Energian-2 and quasiextremal 
By analogy with previous reasoning we shall write the formula for 

quasiextremal for compressible fluid in the following form:  

( ) ( )

( ) ( )

( )

0

.)(
32

1

)(

 div1
2
1

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Ω⋅
∂
∂
⋅−⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

−

−⋅⋅
∂
∂

−⋅⋅
∂
∂

+

+⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅

∂
∂

+∆⋅
∂
∂
⋅−⎟

⎠
⎞

⎜
⎝
⎛ ⋅

∂
∂

vv
vt

p
p

vF
v

vGv
v

vp
q

vv
vdt

dvv
v

o

o

o

µρ
ρ

ρρ

ρ
ρ

µρ

.   (11) 

 
8.3. The split energian-2 
By analogy with previous reasoning we shall write the formula for 

split energian-2 for compressible fluid in the following form:  

( )

( ) ( )( )( )

( ) ( )

( ) ( )( )⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
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⎪

⎩

⎪
⎪
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⎪

⎨
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′′Ω′′−′Ω′⋅−⎟
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⎞

⎜
⎝
⎛ ′′−′
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+′⋅′′⋅−′′⋅′⋅+

′′∆′′−′∆′⋅−⎟
⎠
⎞

⎜
⎝
⎛ ′

′′−
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′⋅

=′′′ℜ

vvvv
dt
dp

dt
dp

vvFvGvvGv

pvpv

vvvv
dt
vdv

dt
vdv

qq

3
2

)()(

divdiv2
),(2

µρρ
ρ

ρρ

ρρ
ρ

µρ

.      (12) 

With the aid of Ostrogradsky formula (р23) we may find the variations of 
functional of spilt full action-2 with respect to functions q′ :  

p
o b
p ′=
′∂
ℜ∂ 2 ,               (13) 

v
o b
v ′=
′∂
ℜ∂ 2 ,               (14) 

These variations are determined by varying the functions p′  and v′ , 
whereas the functions vp ′′′′ ,,ρ  do not change. Then we shall get: 
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( )[ ]
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 (15) 

Remarks for these formulas: 
1, 2, 3, 4) – the derivation is given below, 
5) – is similar to formula 2), 
6, 7) – the derivation is given in the Supplement 1 – see (p34, p35) 

accordingly 
Then we have: 

)(div22 v
dt
dbp ′′⋅−−=′ ρρ ,           (16) 
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,,2
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222
.        (17) 

As was shown above, the condition 
[ ] 0, ==′ ′′ vp bbb             (18) 

and the similar condition 
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[ ] 0, ==′′ ′′′′ vp bbb              (19) 
Are necessary conditions for the existence of a saddle line. From the 
symmetry of these equations it follows that the optimal functions 0q′  and 

0q ′′ , satisfying the equations (18, 19), must satisfy also the condition  

00 qq ′′=′ .               (20) 
Subtracting in pairs the equations (18, 19) taking into account (16, 17), 
we get  

0)(2div-
dt
d2- =′′+′ vvρ

,              (21) 
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⎠
⎞

⎜
⎝
⎛

∂
′′∂′+⎟

⎠
⎞

⎜
⎝
⎛

∂
′′∂′′

⋅+⋅−′′+′∇+

+′′+′Ω⋅−′′+′∆⋅−
′′+′

⋅+

X
vvG

X
vvG

X
vvG

X
vvG

Fpp

vvvv
dt

vvd

ρρ

µµρ

.(22) 

Учитывая (1.45) и сокращая (34, 35) на 2, получаем уравнения (4, 5), 
где 

oo qqq ′′+′= ,              (23) 
Taking into account (1.45) and cancelling (34, 35) by 2, we get the 
equations  (4, 5), where  

 
8.4. About sufficient conditions of extremum 
Above we have proved for incompressible fluid , that the necessary 

conditions (18, 19) of the existence of extremum for the full action-2 
functional  are also sufficient conditions, if the integral  

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
ℜ=

T

V
dtdVI

0
22              (24) 

has  constant sign, where 
)(2)(22 vvv bGvbb ′′−∆−=ℜ ρµ .          (25) 

For compressible fluid the necessary conditions (18, 19) of the existence 
of extremum for the full action-2 functional are also sufficient 
conditions, if the integral (24) has constant sign , where, contrary to (25), 
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)(2)(
3

)(22 vvvvv bGvbbbb ′′−Ω−∆−=ℜ ρµµ .    (26) 

For closed systems with a flow of систем   incompressible fluid we 
have shown above that the value (25) assumes the form 

)(22 vv bb ∆−=ℜ µ .             (27) 
Similarly, for closed systems with a flow of compressible fluid the value 
(26) assumes the form 

)(
3

)(22 vvvv bbbb Ω−∆−=ℜ
µµ .            (28) 

Let us consider now, similarly to (24), the integral 

∫ ∫
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
ℜ′=

T

V
dtdVJ

0
22              (29) 

where 

)(
3

)(22 vvvv Ω⋅−∆⋅⋅−=ℜ′
µµ .          (30) 

(i.e. in this formula instead of the function vb  there is the function of 
speed). As the proof of the integral’s constancy of sign must be valid for 
any function, it is enough to prove the constancy of sign of integral (29) 
with speeds. For this we must note that:  

o the first term in (30) expresses the heat energy exuded by the 
fluid as the result of internal friction,   

o the second tem in (30) is the heat energy exuded/absorbed by the 
fluid as the result of expansion\compression. 

The first energy is positive regardless to the value of vector-function of 
speed with respect to the coordinates (A more exact proof of this fact 
for the first term is given in [4, 5]). The second term is equal to zero (as 
in our statement the temperature is not taken into account, i.e. assumed 
to be constant). Therefore, integral (24, 30) is positive on any iteration,  
which was required to show. 

Thus, the Navier-Stokes equations for incompressible fluid have a 
global solution. 

 
9. Discussion 
Physical assumptions are often built on mathematical corollary facts.  

So it may be legitimate to build mathematical assumption on the base of 
physical facts. In this book there are several such places 
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2. The equations are derived on the base of the presented principle 
of general action extremum.  

3. The main equation is divided into two independent equations 
based on a physical fact – the absence of energy flow through a 
closed system.  

4. The exclusion of continuity conditions for closed systems is 
based in the physical fact   – the continuity of fluid flow in a 
closed system  

5. Usually in the problem formulation we indicate the boundaries 
of solution search  and the boundary conditions – for speed, 
acceleration pressure on the boundaries These conditions 
usually are formed on the base of physical facts, for example –
the fluid "adhesion" to the walls, the walls hardness, etc. In the 
presented method we do not include the boundary conditions 
into the problem formulation – they are found in the   process 
of solution.   

 
We may point also some possible directions of this approach 

development , for example 
i. for problems of electro- and magneto-hydrodynamics 
ii. for free surfaces dynamics  (in changing boundaries for constant 

fluid volume).   
 

The proof of global solution existence belongs to closed systems 
Practically, we must analyze the bounded and closed systems. Therefore 
some methods of formal transformation of non-closed systems into 
closed ones are also proposed, such as: 

1.  long pipe as the limit of ring pipe,   
2.  transformation of a limited pipe segment into closed system 

 
Supplement. Certain formulas 
Here we shall consider the proof of some formulas that were used 

in  the main text. First of all we must remind that   

( ) ⎥
⎦

⎤
⎢
⎣

⎡
∂
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+
∂

∂
+

∂
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=
z

v
y
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x

vv zyxdiv ,    (р1) 
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⎡
∂
∂

∂
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∂
∂

==∇
z
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y
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x
ppp ,,)(grad ,    (р2) 
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,   (р4) 
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∂

=∇⋅
z
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From (2.5, 2.7а) it follows that 

( )222
1 2 zyx vvv

dt
dP ++=

ρ ,    (р7) 

i.e. 

dt
dvvP ρ=1       (р8) 

Let us consider the function (2.7) or 

( )
( )
( )⎟⎟
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P
ρ

    (р9) 



Physics and Astronomy 

 106

or 

( )2
5 2

WvP ∆⋅=
ρ .      (р9а) 

Differentiating, we shall get: 
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After rearranging the items, we get 
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Let us denote: 
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Let us consider the vector 
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or 
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Note that 

)2(2)(
2
1 vGvG =     (р14а) 

From (р11-р14) we get 
,5 GvP ⋅=ρ      (р15) 

( ) )()(,5 vG
v

vGvP ρ=
∂

∂
,   (р16) 

Comparing (р6) and (р14), we find that 
( )vvvG ∇⋅=)( .     (р18) 

Thus, 
( ) ( )vv
v

GvP
∇⋅=

∂
∂ ρ,5 ,    (р19) 

 
Comparing (p9a, p15, p18), we find that 

( ) ( ) vvW ⋅∇⋅⋅=∆ 22 .     (р19а) 
As dynamic pressure is determined [2] by 

22WPd ρ= ,      (р19с) 
then from  (p18, р19a) it follows that the gradient of dynamic pressure is 

( ) GPd ⋅=∆ ρ .      (р19d) 
Let us consider also 

( ) ( )bvGbvGbGvGbvG ,,)()()( 21 +++=+ , (р20) 
where 
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If vbab ⋅= , then 

( ) ( )vvvv bvaGbvaGbGavGbavG ,,)()()( 21
2 +++=⋅+ . (р21) 

We have 
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∂ div , ( ) ( )vpv
p
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′′∂

∂ divdiv -see. (р31).  

 (р22) 
 

The necessary conditions for extremum of functional from the 
functions with several independent variables – the Ostrogradsky  
equations  [3]  have for each of the functions the form 
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where f – the integration element, v(x,y,z,t) – the variable function,  a – 
independent variable.  
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If p,ρ  are scalar fields, and v  is a vector field, then 
( ) )(divgrad)(div vvv ⋅+⋅=⋅ ρρρ ,         (р31) 

( ) )(divgrad)(div vppvvp ⋅⋅+⋅⋅=⋅⋅ ρρρ ,        (р32) 
i.е. 

( ) ( ) )(divgradgrad)(div vpvppvvp ⋅⋅+⋅⋅+⋅⋅=⋅⋅ ρρρρ .   (р33) 
Consider )(div vp ′′⋅′⋅ρ  and suppose that the extremum of a 

certain functional is determined or by varying the function p′ , or by 
varying the function v ′′ . Then, differentiating the last expression by 
Ostrogradsky formula  (p23), we shall find: 

[ ] ( ) )(divgrad0)(div vvvp
p
o ′′⋅+⋅′′+=′′⋅′⋅
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∂ ρρρ , 
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